If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2+12t-33=0
a = 3; b = 12; c = -33;
Δ = b2-4ac
Δ = 122-4·3·(-33)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{15}}{2*3}=\frac{-12-6\sqrt{15}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{15}}{2*3}=\frac{-12+6\sqrt{15}}{6} $
| 5x-17+10x-3=180 | | 13y-5y=15 | | 6x-3=2x+4+3x | | .40x=37 | | 4(-2n-3)=44 | | 6(1+p)=6(-5+3p) | | 8x-7=x-8 | | x+11x=20+2x | | 6(1*p)=6(-5+3p) | | 11x-12=9x-12=180 | | -8x+36=4(-6-5x) | | .8+.3(2-3x)=1.4 | | 2x-1=4x=11 | | 5+4x+40-x=90 | | 5x-2=14+3x | | 3x+10=5x+19 | | 3t^2+12t-30=0 | | 3n-15=37 | | 2x+5=6x-1-3x | | -54=-3(4b+2) | | 5/5x-1/3=-2 | | 2x-20-3x+5=180 | | 7x+5=11x+13 | | 4(2x+9)=-29+33 | | 7+2w=3- | | 5-(0.75+m+1.25)=3(4-0.5m) | | 3x+9+14x=4x | | -61=5x+4 | | (x+18)+(7x-30)=180 | | 5t-3=3t-5* | | 0=(x-6)(x+4) | | 0=(x-6)(x+4 |